Pseudospectral Fourier reconstruction with the modified Inverse Polynomial Reconstruction Method
نویسندگان
چکیده
منابع مشابه
Pseudospectral Fourier reconstruction with IPRM
The Inverse Polynomial Reconstruction Method (IPRM) has been recently introduced by J.-H. Jung and B. Shizgal in order to remedy the Gibbs phenomenon, see [2], [3], [4], [5]. Their main idea is to reconstruct a given function from its n Fourier coefficients as an algebraic polynomial of degree n− 1. This leads to an n × n system of linear equations, which is solved to find the Legendre coeffici...
متن کاملInverse polynomial reconstruction method in DCT domain
The discrete cosine transform (DCT) offers superior energy compaction properties for a large class of functions and has been employed as a standard tool in many signal and image processing applications. However, it suffers from spurious behavior in the vicinity of edge discontinuities in piecewise smooth signals. To leverage the sparse representation provided by the DCT, in this article, we der...
متن کاملA Fast Inverse Polynomial Reconstruction Method Based on Conformal Fourier Trans- Formation
A fast Inverse Polynomial Reconstruction Method (IPRM) is proposed to efficiently eliminate the Gibbs phenomenon in Fourier reconstruction of discontinuous functions. The framework of the fast IPRM is modified by reconstructing the function in discretized elements, then the Conformal Fourier Transform (CFT) and the Chirp Z-Transform (CZT) algorithms are applied to accelerate the evaluation of r...
متن کاملMultiresolution Inverse Wavelet Reconstruction from a Fourier Partial Sum
The Gibbs phenomenon refers to the lack of uniform convergence which occurs in many orthogonal basis approximations to piecewise smooth functions. This lack of uniform convergence manifests itself in spurious oscillations near the points of discontinuity and a low order of convergence away from the dis-continuities. In previous work [11,12] we described a numerical procedure for overcoming the ...
متن کاملLaurent Polynomial Inverse Matrices and Multidimensional Perfect Reconstruction Systems
We study the invertibility of M -variate polynomial (respectively : Laurent polynomial) matrices of size N by P . Such matrices represent multidimensional systems in various settings including filter banks, multipleinput multiple-output systems, and multirate systems. Given an N × P polynomial matrix H(z) of degree at most k, we want to find a P × N polynomial (resp. : Laurent polynomial) left ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2010
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2009.10.026